Tokamak
Basic plasma parameters in tokamaks
Choose Tokamaks
Major radius
miner radius
BT
Line averaged electron density
Averaged electron Temperature
Plasma current
Gyrotron frequency
Neutral beam energy
Electron Temperature `T_e`
\( KT=E\)
Debye length `lambda_D`
\(\lambda_D=\sqrt{\frac{\epsilon_0 KT_e}{n_e e^2}}\)
electrons in a debye sphere
\(n_e \lambda_D^3\)
average distance
\(d=n^{-1/3}\)
\(kT/E_{coulomb}\)
\(kT/E_{coulomb}=4\pi(n_e\lambda_D^3)^{2/3}\)
magnetic pressure
\(p_B=\frac{B^2}{2\mu_0}\)
plasma pressure
\(p=nKT\)
Aspect ratio
\(ratio=R/a \)
plasma frequency at centre
\(f_{pe}=\frac{1}{2\pi}\sqrt{\frac{n_e e^2}{\epsilon_0 m}}\)
Electron cyclotron frequency at centre
\(f_{ce}=\frac{e Bt}{m}\frac{1}{2\pi}\)
O-mode density limit
\( f_{pe}(n)=f_{ce}\,\,\, n\approx Bt^2 \times 10^{19}\)
Centre X2 mode density limit
\(\displaylines{\frac{X}{Y}=\frac{\omega_{pe}^2(n)}{\omega^2}\frac{\omega^2}{\omega_{ce}^2}=\frac{1}{2}\times\frac{4}{1}=2\,\,\, \\ n \approx 2Bt^2 \times 10^{19}}\)
D neutral beam damping length `bar lambda`
\(\bar \lambda=5.5\times 10^{17}(E_b(keV)/A_b)/n_e(/m^3) \)
Greenwald density
\(n_G(10^{20}/m^3)=\frac{I_p(MA)}{\pi a^2} \)
first harmonic resonance position
\(RB_T=(R+\rho_1a)\frac{f_g}{28} \)
2nd harmonic resonance position
\(RB_T=(R+\rho_2a)\frac{f_g}{28\times 2} \)
O mode cutoff local density
\( n_o^2=1-\frac{f_{pe}^2}{f_g^2}>0 \,\,\,f_{pe}=8.98\sqrt{n}\)
X2 density limit
\(X=\frac{\omega_{pe}^2}{\omega^2}=\frac{1}{2}\,\,\, Y=\frac{\omega_{ce}^2}{\omega^2}=\frac{1}{4}\)
O mode cutoff position
\(\displaylines{(n_{e0}-n_{ea})(1-r^2)+n_{ea}=n_{cutoff}\\ n_{e0}=1.5 \bar n_e\,\,\, n_{ea}=n_{e0}/5}\)
Toroidal field profile
\( R B_T=(R+\rho a)B(\rho)\)
\(f_{cH}\)
\(f_{cH}=2f_{cD}=\frac{e B}{m_i}\frac{1}{2\pi}\)
\(f_{cHe_3}\)
\(f_{cHe_3}=2f_{cT}=\frac{2 e B}{3 m_i}\frac{1}{2\pi}\)