plane wave reflection and refracting
constants:c epsilon0 mu0
Parameters
Incident angle
`theta_i`
\(^{\circ}\)
incident permittivity
`epsilon_1`
\(\)
incident permeability
`mu_1`
\(\)
refracted permitivity
`epsilon_2`
\(\)
refracted permeability
`mu_2`
\(\)
Output
incident reflect index `n_1`
`n_1=(ck_1)/omega=sqrt(epsilon_1 mu_1)`
incident wave impedance `Z_1`
`Z=abs(E/H)={omega mu}/k=sqrt(mu/epsilon)`
refracted reflect index `n_2`
`n_2=(ck_2)/omega=sqrt(epsilon_2 mu_2)`
relative reflect index `n_21`
`n_21=n_2/n_1`
refracted wave impedance `Z_2`
`Z=abs(E/H)={omega mu}/k=sqrt(mu/epsilon)`
refracted angle `theta_r`
`n_1 sin(theta_i)=n_2 sin(theta_r)`
Parallel polarization
reflect coefficient `R_p`
`R_p=(Z_1 cos(theta_i)-Z_2 cos(theta_t))/(Z_1 cos(theta_i)+Z_2 cos(theta_t))`
refract coefficient `T_p`
`T_p=(2 Z_2 cos(theta_i))/(Z_1 cos(theta_i)+Z_2 cos(theta_t))`
Brewster angle `theta_b`
`tan(theta_b)=n_21`
Perpendicular polarization
reflect coefficient `R_bot`
`R_bot=(Z_2 cos(theta_i)-Z_1 cos(theta_t))/(Z_2 cos(theta_i)+Z_1 cos(theta_t))`
refract coefficient `T_bot`
`T_bot=(2 Z_2 cos(theta_i))/(Z_2 cos(theta_i)+Z_1 cos(theta_t))`
reflect vs incident angle
Figure