particle in magnetic field

The motion of particles in an uniform magnetic. The relativity is taken into consideration.


Parameters

mass
m \(kg\)
charge
q \(c\)
magnet
B \(T\)
Temperature
`T_bot` \(eV\)
Electric Field
E \(V/m\)

Electron

Temperature 

`KT=1eV`

gamma `gamma`

`m_0 gamma c^2=E_k+m_0 c^2`

magnetic moment `mu`

`mu=E_{k bot}/B={mv_bot^2}/(2B)`

newton speed `v_bot`

`KT_bot=1/2 m_e v_bot^2`

relativity speed  `v_bot`

`v=c sqrt(1-1/gamma^2)`

anger frequency `omega_{ce}`

\(\omega _{ce}=\frac{e B}{m_e}\)

frequency `f_{ce}`

\(f_{ce}=\frac{\omega}{2 \pi}\)

larmor radius `r_e`

\(r_e=\frac{v_{\bot}}{\omega_c}\)

period `T_{ce}`

\(T_{ce}=\frac{1}{f}\)

\(E \times B \) drift 

\(\frac{E \times B}{B^2} \)

mass ratio 

`m_i/m_e`


Ion

speed `v_bot`

`KT_bot=1/2 m_i v_bot^2`

anger frequency `omega_{ci}`

`omega_{ci}={q B}/m_i`

cyclotron frequency `f_{ci}`

`f_{ci}=omega_{ci}/{2pi}`

lamor radius  `r_i`

`r_i=v_bot/omega_{ci}`

period  `T_{ci}`

`T_{ci}=1/f_{ci}`