Maxwell’s equation in vacuum
Name | Integral equations | Differential equations |
---|---|---|
Gauss’s law | ||
Gauss’s law for magnetism | ||
Maxwell–Faraday equation(Faraday’s law of induction) | ||
Ampère’s circuital law (with Maxwell’s addition) |
Next, We obtain the electromagnetic wave equation in a vacuum. It is also called Helmholtz equation. Take the Curl of the Faraday equation
\(\nabla \times \left(\nabla \times \mathbf {E} \right)=\nabla \times \left(-{\frac {\partial \mathbf {B} }{\partial t}}\right)=-{\frac {\partial }{\partial t}}\left(\nabla \times \mathbf {B} \right)=-\mu _{0}\varepsilon _{0}{\frac {\partial ^{2}\mathbf {E} }{\partial t^{2}}}\)
Use the Bac-Cab rule for the Vector,
\(\nabla \times \left(\nabla \times \mathbf {E} \right)=\nabla \left(\nabla \cdot \mathbf {E} \right)-\nabla ^{2}\mathbf {E} \)
It is sourceless in the vacuum,
\(\nabla\cdot E=0\)
\(\nabla^2 E-\epsilon_0\mu_0 \frac{\partial^2 E}{\partial t^2}=0\)
In time harmonic wave \(\frac{\partial}{\partial t}=j \omega\)
So the wave equation is
\(\nabla^2 E+\omega^2\epsilon_0\mu_0 E=0\)
Maxwell’s equation in material
Name | Integral equations | Differential equations |
---|---|---|
Gauss’s law | ||
Gauss’s law for magnetism | ||
Maxwell–Faraday equation (Faraday’s law of induction) | ||
Ampère’s circuital law (with Maxwell’s addition) |