Coulomb potential barrier

The Coulomb potential barrier, also known as the Coulomb barrier, is a concept in physics that refers to the energy barrier that must be overcome for two charged particles to interact or come close enough to undergo a specific process, such as nuclear reactions or particle interactions. It arises due to the electrostatic repulsion or attraction between charged particles, as described by Coulomb's law.
constants:c e me mi Na epsilon0 mu0


Parameters

Particle 1 mass number
`A_1` \(\)
Particle 1 charge number
`Z_1` \(\)
Particle 2 mass number
`A_2` \(\)
Particle 2 charge number
`Z_2` \(\)
Plasma Temperature
`E` \(eV\)
Ion 1 density
`n_1` \(/m^3\)
Ion 2 density
`n_2` \(/m^3\)

Output

Nuclei radius  `r_n`

`1.44xx10^-15(A_1^(1/3)+A_2^(1/3))`

Coulomb barrier `U`

`U(r)=1/(4 pi epsilon_0) (Z_1 Z_2 e^2)/r_n`

90 degree scatter incident radius  `b_90`

\[ b_{90} = \frac{Z_1 Z_2 e^2}{4 \pi \varepsilon_0 E} \]

coulomb scatter cross-section `sigma`

`sigma=pi b_90^2 ln Lambda`

DT cross-section `sigma`

`sigma=(S(E))/(E exp(B_G/sqrt(E))`

DT reactivity `sigma v`

experiment data fit

DT fusion rate per volume `dR//dV`

`{dR}/{dV}=n_1 n_2 sigma v`

DT fusion power per volume P

`P={dR}/{dV} 17.2MeV`

`alpha` particle power `P_alpha`

`P_alpha=1/5*P`

neutron power `P_n`

`P_n=4/5 P`

neutron flux for 1MW `f_n`

`1MJ=n 17.6MeV`

neutron mole for 1MW mole

`f_n/{NA}`

Deuterium burning rate for 1MW  `m_D`