Coaxial Cable

formula on coaxial cable, including the skin effect


Parameters

frequency
f \(Hz\)
inner radius
a \(mm\)
outer radius
b \(mm\)
relative dielectric
`epsilon_r` \(\)
Power
P \(W\)
electric conductivity
`sigma` \(S/m\)
loss tangent
`sigma_s` \(\)

Lossless Transmission Line

wave impedance 

\(Z_0=\sqrt{\frac{\mu}{\epsilon_0\epsilon_r}}\)

characteristic impedance 

\(Z_c=\frac{V_0}{I_0}= \frac{Z_0 ln(b/a)}{2\pi}\)

Voltage(max) 

\(P=\frac{1}{2}V_0 I_0=\frac{1}{2Zc}V_0^2\)

Voltage rms 

current(max) 

\(I_0=\frac{V_0}{Z_c}\)

Current rms 

maximum electric field 

\(E_r=\frac{V_0}{\rho ln(b/a)}e^{-j k z}\)

maximum magnet flux density 

\( H_\phi=\frac{E_\rho}{Z_0}=\frac{B}{\mu}\)

phase speed 

\(v_p=\frac{\omega}{k}=\frac{1}{\sqrt{\epsilon_0 \mu_0 \epsilon_r}}=\frac{c}{\sqrt{\epsilon_r}}\)

single mode band 

\( f_c=\frac{c}{\pi(a+b)\sqrt{\epsilon_r}}\)


Skin effect

resistivity 

\(\rho=\frac{1}{\sigma}\)

anger frequency 

\(\omega=2 \pi f\)

skin depth 

\(\delta=\sqrt{\frac{2\rho}{\omega\mu}}\sqrt{\sqrt{1+(\rho\omega\epsilon)^2}+\rho\omega\epsilon}\)

series resistance 

\(R_s=\frac{1}{\sigma\delta}\)


Transmission line parameters

series inductance 

\(L=\frac{\mu ln(b/a)}{2 \pi}\)

shunt capacitance 

\(C=\frac{2\pi\epsilon}{ln(b/a)}\)

series resistance 

\(R=\frac{R_s}{2\pi}(\frac{1}{a}+\frac{1}{b})\)

shunt conductance 

\(G=\frac{2\pi \omega\epsilon' \tan\delta}{ln(b/a)}\)


Loss parameters

propagation constant 

\(\gamma=\alpha+j\beta=\sqrt{(R+j\omega L)(G+j\omega C)}\)

characteristic impedance  

\(Z=\frac{V_0^+}{I_0^+}=-\frac{V_0^-}{I_0^-}=\frac{R+j\omega L}{jk}=\sqrt{\frac{R+j \omega L}{G+j \omega C}}\)

loss per meter 

\(20\log_{10}(e^{-\alpha})\)